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We calculate the kaon B parameter in quenched lattice QCD at $=6.0 using Wilson fermions at
k=0.154 and 0.155. We use two kinds of nonlocal (“smeared”) sources for quark propagators to calcu-
late the matrix elements between states of definite momentum. The use of smeared sources yields results
with much smaller errors than obtained in previous calculations with Wilson fermions. By combining
results for p=1(0,0,0) and p=(0,0,1), we show that one can carry out the noperturbative subtraction
necessary to remove the dominant lattice artifacts induced by the chiral-symmetry-breaking term in the
Wilson action. Our final results are in good agreement with those obtained using staggered fermions.
We also present results for B parameters of the Al =% part of the electromagnetic penguin operators,

and preliminary results for By in the presence of two flavors of dynamical quarks.

PACS number(s): 12.38.Gc, 11.15.Ha, 14.40.Aq

I. INTRODUCTION

Present calculations of weak matrix elements in the
quenched approximation with Wilson fermions suffer
from two main sources of error: (i) the signal is poor and
(ii) there are large O(a) corrections due to lack of chiral
symmetry [1,2]. In this paper we investigate the calcula-
tion of the matrix elements of four-fermion operators be-
tween pseudoscalar states, and in particular Bg. To im-
prove the signal we calculate the three-point function by
sandwiching the operator between kaons produced by
smeared sources. This trick has been used to obtain very
accurate results with staggered fermions [3]. In order to
reduce the O(a) artifacts we use a momentum-
subtraction technique that has been tried earlier by the
ELC Collaboration [4]. We find that the combined
method reduces the statistical errors for all four-fermion
operators we have looked at, and allows us to perform
nonperturbative subtractions for removing two of the
three-chiral-symmetry-violating terms in By.

The O(a) corrections arise due to mixing between
operators of different tensor structure induced by the ex-
plicit chiral-symmetry-breaking term introduced by Wil-
son to remove lattice doublers. In principle this mixing
can be calculated in perturbation theory, but there are
large nonperturbative effects at values of g used in lattice
calculations. There are two approaches to improving the
situation: one is to work with an improved action so that
the mixing occurs at O(g2a) and O(a?) rather than at
O(a) [5], and the second is to devise nonperturbative
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methods to subtract off the lattice artifacts. It is likely
that the eventual solution will be a combination of the
two methods. To this end we demonstrate that the calcu-
lation of matrix elements within states of definite lattice
momentum works for p=(0,0,0) and (0,0,1), and further-
more that one can reliably carry out a nonperturbative
subtraction using these two values of momentum. We
use the kaon B parameter as the testing ground for two
reasons: (a) there are very accurate results available us-
ing staggered fermions on the same set of lattices against
which we may compare our results, and (b) there is no
mixing with operators of lower dimension.

To make our nonperturbative method work we need
two kinds of hadron source: one that produces hadrons
with zero momentum and the other that couples to all
momenta. We construct zero-momentum hadron corre-
lators using wall source quark propagators, while the
Wuppertal source [6] propagators yield hadron correla-
tors that have overlap with all momenta. We have shown
in Ref. [7] that these two kinds of correlators yield reli-
able signals for both the amplitude and the mass extract-
ed from two-point correlation functions. That paper de-
scribes in detail the lattices used in the calculation and
details of the quark propagators and hadron correlators.
It also contains results for hadron masses and decay con-
stants obtained from two-point correlation functions. We
use 35 lattices of size 163X40 at B=6g 2=6.0 with
quark propagators calculated at k=0.154 and 0.155. The
two values of « correspond to kaons of mass Mg =700
and 560 MeV, respectively, using a “!'=1.9 GeV.
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The most accurate results for By at f=6.0 have been
obtained with staggered fermions [3]:

(1.1)

0.701+0.02 (16X 40 lattices),
K7 10.704+0.01 (24°X 40 lattices).

There are two previous estimates of By with Wilson fer-
mions at 8=6.0. The results of Bernard and Soni are [2]

0.8340.11+0.11 (16°X40 lattices),
K= (1.2)

0.6610.08+0.04 (243 X 40 lattices),

and those of the ELC Collaboration are (we quote their
results obtained on 102X 20X 40 lattices using a linear as
well as a quadratic extrapolation) [1]

0.81+0.16 (linear),
By = (1.3)

0.75%0.20 (quadratic).

In all calculations the lattice kaon consisted of two al-
most degenerate quarks (the ratio mg /m, <3). The
above results were obtained after interpolation and/or ex-
trapolation of the lattice data to a kaon mass of 495 MeV.
The large spread in these numbers and the systematic er-
rors due to bad chiral behavior induced by the Wilson
term underscore the need for further improvements and
new methods.

We also calculate the B parameter for the Al =3 part
of the electromagnetic penguin operators @; and Q.
Previous calculations with both Wilson [8,9] and stag-
gered fermions [10] show that reliable results for the ma-
trix elements of these LR operators can be obtained in
lattice calculations and that the vacuum saturation ap-
proximation (VSA) provides a good estimate, i.e.,
B3¢=1.0%0.1. Our estimates are 0.89(4) and 0.93(5),
respectively, and we find that the dominant contribution
to the matrix elements of both the LR operators and their
VSA comes from the pseudoscalar ® pseudoscalar (P)
part of the four-fermion operator. Our data show that
matrix elements of 7 are larger by a factor of 10 or more
than other tensor structures and that the two-color loop
contraction is roughly 3 times larger than the one-color
loop. Furthermore, as the operator ? is not suppressed
in the chiral limit, we believe that the VSA will be a good
approximation in cases where the operator or its Fierz
transform contains 7 at the tree level.

This paper is organized as follows. In Sec. II we re-
view the problem induced by the Wilson r term and our
partial solution for subtracting lattice artifacts. In Sec.
IIT we describe the lattice methods and in Sec. IV we
present our results for By. We make a comparison with
earlier results obtained with both Wilson and staggered
fermions in Sec. V. Section VI presents preliminary re-
sults for Bg with two flavors of dynamical quarks. The
analysis of the LR operators is given in Sec. VII and we
end with conclusions in Sec. VIII.

II. Bx AND THE PROBLEM
OF BAD CHIRAL BEHAVIOR

Weak interactions give rise to mixing between the K°
and the KO The relevant operator in the low-energy
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effective weak Hamiltonian is the AS =2 four-fermion
operator (EyMLd )(E‘}/#Ld), where we use the notation
L =(1—v5) and R =(1+v5). The value of the matrix
element of this operator between a K® and a KC%ata typi-
cal hadronic scale is severely influenced by strong in-
teraction effects. It has become customary to
parametrize this matrix element by the kaon B parameter
By, which measures the deviation from its value in the
VSA:

(K°(57,Ld)5y,Ld)|K®)=4fEMEB , @.1)
where parentheses indicate a trace over the spin and
color indices. The normalization used for the decay con-
stant is such that f_ =132 MeV. If the VSA is exact,
then By =1. To calculate By from first principles we
must turn to nonperturbative methods such as the lattice
calculation. Our lattice calculation of By uses Wilson’s
formulation for fermions. The inherent violation of
chiral symmetry in this approach leads to technical
difficulties which we now review.

To begin with, note that (5 ,Ld)(Sy,Ld) is a special
case of the operator

O+ =5y, L)Wy, L)+ (204)],

with ¢, =v;=s and ¢¥,=y,=d. The significance of this
is that with a chirally invariant regulator @ is multipli-
catively renormalized. With Wilson fermions, however,
this is not the case: there is mixing of this LL operator
with other tensor structures in addition to an overall re-
normalization, and this complicates the definition of a
lattice operator with the desired continuum behavior. In
perturbation theory, the corrected operator has been cal-
culated to one-loop in Refs. [11] and [12]:

(2.2)

2

o= |1+ 156’1T22+(r,au) ok

482 27 % STP VA4 SP
+—===r2Z*(NOST+ 0+ 0%F) (2.3)
167
where

oSP=N L1 ot T+P)+(2004)]

+ 16N ’
N2+N—1

VA_— _ —

O 12N (V—=A)+(24)], (2.4)
1

SP__— __ —

05 16N[(.:s° P)+(2o4)],

and N =3 is the number of colors. We have used a con-
densed notation for the allowed Lorentz tensor struc-
tures:

&=(1ﬁ1¢2)(ﬁ3¢4) ’
W:(Jl'}’ylﬁz)(‘%‘h‘/&t) ’
T= 2 (Jﬂmlbz)“;s”uv’l'«t) ’

u<v

A :($17M75¢2)(1Z37p75¢4) s
P=(1hy7 s D3y s¢4)



47 KAON B PARAMETER WITH WILSON FERMIONS 5115

where v, vs are Hermitian and o,,=(y,7,—7,¥,)/2.
We note that the Fierz transform eigenstates appearing in
Eq. (2.3) are only (V+A), HV—A)X(S—P), and
(&+ T +7P); there is also no mixing between the fifth
eigenstate of the Fierz transformation (&—+7+%) and
the operator @, and one-loop. There is no mixing with
lower-dimensional operators, for the simple reason that
there are no AS =2 operators of lower dimension. We
shall henceforth denote the perturbatively corrected
(5 ,Ld)(5y,Ld) operator [cf. Eq. (2.3)] by O.

The renormalization coefficients for Wilson parameter
r =1 are given in Table I in three schemes: the dimen-
sional reduction (DRED) used by Altarelli e al. [13] and
Martinelli [11], as well as the “naive” dimensional regu-
larization (NDR) and the dimensional reduction with an
easy subtraction [DR(EZ)] scheme used by Bernard,
Draper, and Soni in [12]. A detailed description of
DRED and NDR schemes and their relative advantages
and disadvantages is given in Ref. [14]. We tabulate the
relevant results in order to provide an easy reference, and
to allow the reader to make a rough estimate of the mag-
nitude of the scheme dependence. All our results are
given in the DRED scheme, except when we compare
raw lattice numbers against those in Ref. [15], in which
case we use DR(EZ).

For each of the four-fermion operators &, V, T, A,
and P, there are two distinct contractions with the exter-
nal states. In the first each bilinear is contracted with an
incoming or outgoing kaon corresponding to two spin
and two-color traces. We label these contractions by 7?2,
8, V2 A2 and T2 The other contraction consists of a
single spin and color trace which we Fierz transform to
two spinor loops. We label them by P!, &, V!, A!, and
T, since they have a single color trace. We will find it
useful to further split the YV, A, and T terms into their
space and time components, and denote these com-
ponents by subscripts s and ¢, respectively. This notation
is similar to that used with staggered fermions [3] and
will facilitate later comparison of results for individual
operators between the two formulations.

TABLE 1. Summary of one-loop perturbative results for the
various Z factors needed in our calculations in three different
continuum regularization schemes. The two constants are

CF=§ and A=g?/167%. The results in DRED and NDR

schemes are the sum of those in DR(EZ) and the entries in their
respective columns. These expressions are extracted from Refs.
[11], [12], and [7]. The numerical results are taken from Ref.
[12]. In the text all results are given in the DRED scheme used
in Ref. [11], except when we compare raw lattice numbers
against those in Ref. [15].

DR(EZ) DRED NDR
Z, 1—15.796CrA 0.5CrA 0
Zp 1+ CrA(61n(pa)—21.596) 0 —CpA
Z. —~50.174—41n(pua) 1 14
zZ_ —45.308+8 In(ua) -2 —4
Z, —49.364—2 In(ua) u u
z, —42.064+161n(ua) —% —%
z* 9.6431 0 0

In order to extract By, we calculate, at nonzero-
momentum transfer, the matrix element

My (p)={K%p)|O(p)|K%Ap=0)) . (2.6)

In chiral perturbation theory JMg(p) behaves as
~YkPk'Dg>» Where yx =8/3f2Bg, and py and Dg are
the on-shell four-momenta of the external states, so that
Pk 'Pg =MV MZ+(p)%. Unfortunately, on the lattice
with Wilson fermions chiral symmetry is explicitly bro-
ken and the expansion becomes

My (p)=a+BME+(y+yglpgpg+ - ", 2.7

where the ellipsis represents terms of higher order in p?
or M%. The terms proportional to a, 8, and y are un-
physical contributions arising from the » term in the Wil-
son action. The same formula also holds for off-shell ma-
trix elements (i.e., {0|O|K°K°)). .

Using the perturbatively improved operator @ reduces
the size of the lattice artifacts, but does not eliminate
them completely because it is only an approximation to
the desired continuum operator. In particular, there is
mixing with operators having the wrong chiral behavior
at O(rg*). As we discuss below, this apparently tiny
effect can in fact be important. In addition, there are
O (a) corrections, which previous calculations have
shown to be significant, and which cannot be removed by
a perturbative correction to the operator. To isolate the
physical coefficient yx we therefore require a nonpertur-
bative method.

As discussed below, we expect the most troublesome of
the lattice artifacts to be a. Failure to correctly subtract
this contamination will mean that By will diverge in the
chiral limit. To eliminate this, it is not necessary to work
at nonzero-momentum transfer. One can simply calcu-
late M (p=0) at different values of « (that is, different
values of M) and take a difference, leaving

My (k,p=0)—Mg(K,p=0)
=B+y+yg)ME—M%). (2.8)

To remove B one takes the difference of the on-shell and
off-shell matrix elements. This method has been used in
Refs. [1] and [2], and suffers from the lack of control over
final-state interactions between the kaons in the off-shell
amplitude. A review of the status of previous results is
given in Refs. [16] and [17].

We advocate instead using momentum subtraction
with only on-shell matrix elements, which eliminates both
a and B at each value of Mg. By calculating the matrix
element of @ for two values of p and taking the difference
one gets

M (p)— M (0)=(y +7x Mg (E(p)—Mg)+ -+ . (2.9)

In fact, this cancels all higher-order terms in the chiral
expansion dependent on M2 alone. In practice we calcu-
late

_ E(p)BE(p)—MgBE(0)  (y+yg)
K E(p)—My 112

+ - (2.10)
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at each value of «, where by B,’;(p) we mean the ratio of
the matrix element to its VSA value, both calculated on
the lattice at approximate momentum transfer.

There are two shortcomings to this subtraction
scheme. The first is that it does not eliminate the lattice
artifact y. It is therefore important to estimate the size
of y relative to ¥ x. To do this we assume that lattice ar-
tifacts can be represented by mixing with local operators,
and that the size of this mixing can be estimated using
perturbation theory. This ignores O (a) effects, but the
resulting estimate turns out to have the correct order of
magnitude. Based on the correction to the operators
through O(g?) [Eq. (2.3)], we estimate the size of the
remaining lattice artifacts in O to be
2

8O=r (cpPtep T+ ---),

2
10-8—
167

where ¢p and ¢y are of order 1. Here we have assumed
that the typical perturbative coefficient is 10 [as is true
for the largest coefficients in Eqgs. (2.3) and (4.1)]. If we
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take g2=1.75 (a reasonable value as discussed below), set
r =1, and assume cp=c;=1, the factor multiplying the
operators is . It is certainly possible that the actual
coefficient is somewhat larger (or smaller), but it is clear
that the suppression factor is large. In order to overcome
this factor, we need only consider operators with large
matrix elements. To get a rough estimate, we consider
only ?? (defined below), since this has the largest matrix
elements, and assume that it is sufficient to work with the
bare lattice operator, i.e., without perturbative correc-
tions. In other words, we assume that

a+(B+yIME=~(K,|80|K,) =~ L(K,|P’|K,) .

Converting the results for B, given in Tables II(b) and

III(b) to those for matrix elements, and using our final re-
sult for By, gives the estimates

a+(B+y)Mg=15[267,254]X10"*
=1114,25)(y +yx M} .

TABLE II. (a) The one-color loop contribution to the lattice B parameters for individual operators at k=0.154. Each box shows
the y? for a correlated fit, the temporal range of the fit and the fitted value. The space and time components of the operators have
been shown separately. The appropriate ratios of correlators have been calculated using two different kaon operators s and 4, and
using Wuppertal and wall sources. The notation, for example, is as follows: PS[1]WP stands for the four-fermion operator with one
unit of lattice momentum sandwiched between Wuppertal and wall source kaons each created with operator ys. All errors are calcu-
lated using the single elimination jackknife method. (b) The same as (a), but for the two-color loop contribution.

PS[0]SP PW[O]WP PS[0]WP PS[1]WP AS[01S4 AW[0]WA  AS[O]WA  AS[1]W4
(a)
1.6 1.1 0.3 0.8 1.4 1.2 0.6 0.5
14-26 14-26 14-26 23-31 12-28 14-26 10-30 22-31
P! —4.30(21) —4.03(17) —3.99(19) —2.58(28) —3.86(35) —3.86(21) —3.70(20) —2.45(27)
2.3 4.7 2.0 2.0 7.7 4.0 2.8 1.8
10-30 12-28 12-28 24-33 10-30 11-29 10-30 22-31
S$! —0.45(4) —0.42(6) —0.42(3) —0.26(5) —0.38(8) —0.40(6) —0.38(4) —0.26(5)
2.2 6.0 4.3 1.2 4.0 6.1 3.2 1.8
16-28 12-28 13-27 26-33 10-30 10-30 10-30 22-32
V! 0.40(18) 0.35(10) 0.35(8) 0.10(11) 0.36(9) 0.39(11) 0.31(6) 0.10(10)
4.3 1.3 1.1 0.8 2.3 1.2 2.7 0.9
11-29 12-28 14-26 26-33 15-25 14-26 10-30 22-31
! 0.24(6) 0.22(2) 0.21(2) 0.12(2) 0.22(3) 0.20(2) 0.22(2) 0.11(3)
3.5 2.0 2.2 0.2 2.2 2.7 2.0 0.4
12-28 12-28 11-29 25-34 10-30 14-26 10-30 26-33
Al —0.60(6) —0.56(6) —0.56(5) —0.33(4) —0.54(3) —0.50(5) —0.52(6) —0.28(6)
3.8 1.0 4.2 2.9 0.8 1.4 0.6 1.6
12-28 14-26 9-31 27-33 14-26 14-26 14-26 27-35
Al 0.11(2) 0.12(2) 0.10(2) 0.15(3) 0.10(3) 0.12(2) 0.09(1) 0.15(4)
1.8 1.5 0.9 1.9 0.6 2.8 1.1 0.7
10-30 15-25 10-30 25-34 16-24 12-28 10-30 23-31
T! 2.84(21) 2.63(10) 2.70(10) 1.59(18) 2.56(34) 2.59(14) 2.51(16) 1.54(16)
33 1.0 0.7 1.1 1.5 2.5 0.6 1.2
14-26 15-25 10-30 25-32 12-24 14-26 12-28 24-31
T} 2.93(24) 2.73(10) 2.79(12) 1.70(21) 2.67(36) 2.66(17) 2.58(17) 1.66(20)
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TABLE II. (Continued).
PS[0]SP PW[O]WP PS[O]WP PS[11WP AS[0]SA4 AWI[0IW A AS[0]W A AS[11W A
(b)
1.6 0.9 0.4 0.8 1.6 1.1 0.8 0.6
12-28 12-28 10-30 23-32 12-28 14-26 9-31 22-31
2 —12.09(75) —11.60(50) —11.26(43) —7.15(75) —10.99(95) —11.05(60) —10.77(54) —6.81(68)
2.9 2.7 2.8 1.7 2.7 1.3 2.0 1.8
10-30 14-26 14-26 25-33 12-28 14-26 10-30 22-31
$? —0.60(10) —0.51(9) —0.49(6) —0.40(8) —0.47(14) —0.49(6) —0.52(7) —0.38(7)
1.2 1.3 1.1 0.6 3.0 2.5 1.6 1.6
15-25 14-26 12-28 25-34 10-30 14-32 10-32 26-33
y? 0.03(3) 0.04(2) 0.05(2) 0.01(2) 0.04(3) 0.04(3) 0.04(2) —0.02(3)
1.0 2.1 1.8 1.3 2.8 2.1 2.2 1.5
14-26 14-26 10-30 25-34 12-28 14-26 10-30 24-31
92 0.02(0) 0.02(1) 0.02(0) 0.01(1) 0.02(0) 0.02(1) 0.02(0) 0.02(1)
5.1 2.4 1.9 2.1 2.4 2.1 1.9 1.2
8-32 11-26 10-30 25-34 10-30 14-26 10-30 25-33
A? —0.54(5) —0.52(4) —0.53(4) —0.31(3) —0.50(7) —0.49(4) —0.49(5) —0.25(4)
34 4.2 1.3 0.8 2.8 33 0.7 0.8
13-24 10-25 15-25 25-33 12-24 14-26 16-24 24-32
A? 0.64(4) 0.62(3) 0.58(2) 0.64(8) 0.56(5) 0.58(7) 0.54(3) 0.60(7)
5.3 3.6 3.2 2.0 3.6 3.9 3.0 1.5
10-30 12-28 10-30 28-34 12-28 14-26 10-30 23-35
T2 0.05(2) 0.06(2) 0.05(1) 0.03(1) 0.05(2) 0.05(1) 0.04(2) 0.04(1)
7.1 1.5 2.3 1.0 3.7 2.1 4.1 1.1
14-26 14-26 10-30 25-33 8-31 14-26 6-34 26-33
T? 0.07(2) 0.05(1) 0.05(1) 0.03(1) 0.03(5) 0.04(3) 0.06(2) 0.05(1)

The two results are for k=[0.154,0.155]. This shows
that the matrix elements provide fairly large enhance-
ment factors, which, if there are no cancellations between
operators in 80, can overcome the factor . This esti-
mate suggests that the lattice artifacts can be 20% -30%
of the signal. In fact, we find in Sec. IV that the artifact
is 2—3 times larger than this. Given the crudeness of this
estimate, however, we consider the agreement reasonable.
We mention in passing that Bernard and Soni have advo-
cated a scheme based on such an analysis to subtract the
unphysical terms [2].

The second part of our estimate is of the ratio
yM3% /(a+BMZE) for our values of the kaon mass. We
calculate a,BM2, and yM} for the two dominant opera-
tors 7 and T using the results in Tables II and III.
Neglecting perturbative corrections to the operators, we
find that P!, 72, and T all give similar results:

M2 BMZ
T —0.30.3), =X
a+BMi a

~0.3,

at the two kaon masses. This is the basis for our asser-
tion that a is the dominant lattice artifact. It also shows
that, if the entire lattice artifact is of the same size as the
signal, as we find to be roughly true, then |y /y|=~0.3, a

substantial but not overwhelming correction.

Finally, we comment on the second shortcoming of the
subtraction method, its reliance on a truncated chiral ex-
pansion. The chiral expansion parameter is p2/(27f )%
Using p2=M,2<, this is +-1 for our masses. However, it
is even larger for our matrix elements at nonzero-
momentum transfer, approaching unity. As mentioned
above, our subtraction method does not remove correc-
tions of the form Mgpy -pg or (pg-pg). In Sec. IV we
make a rough estimate of these terms by comparing the
results for Bg from Eq. (2.10) coming from different kaon
masses. The corrections are significant, but we are not
able to separate the physical contributions from the ar-
tifacts. Therefore, the method needs to be tested further
on larger lattices so that the minimum nonzero momen-
tum is reduced, and data at a few different momentum
transfers can be obtained.

III. METHODOLOGY

Our method for calculating By requires that we double
the 16X 40 lattices in the time direction, so that they are
of size 163X 80. On these doubled lattices we construct
hadron correctors such that the correlator on time slices
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TABLE I1I1. (a) The same as in Table II(a) but for k=0.155. (b) The same as (a), but for the two-color loop contribution.
PS[O]SP PW[O]WP PS[O]WP PS[1]WP AS[0]S4 AW [0]W A AS[01W A AS[1]1W A

(a)
2.6 0.6 0.5 2.1 1.9 1.8 0.9 0.8
10-30 16-27 10-30 23-33 12-28 14-28 12-30 26-33
P! —7.08(97)  —6.48(41)  —6.49(39)  —3.42(57) | —5.98(71) —5.99(44) —5.58(42)  —3.24(42)
3.2 4.4 1.8 1.4 4.5 3.4 1.5 2.3
10-30 14-27 11-29 28-33 10-30 14-28 12-30 26-33
S$! —1.01(18) —0.92(19) —0.94(10) —0.48(13) —0.85(14) —0.89(19) —0.85(10) —0.48(11)
5.9 8.7 3.1 1.2 4.6 10.6 3.3 1.1
13-29 13-27 13-27 25-33 14-32 10-30 12-30 27-34
y! 0.83(65) 0.87(41) 0.91(17) 0.32(18) 0.83(18) 0.83(31) 0.79(18) 0.36(27)
6.0 2.9 1.5 1.1 5.3 1.5 1.0 0.5
15-26 11-29 14-26 26-33 11-30 14-28 13-29 26-33
V! 0.38(15) 0.45(9) 0.42(5) 0.22(6) 0.42(9) 0.41(8) 0.40(5) 0.23(7)
4.4 2.6 1.6 0.3 ) 0.7 3.9 2.2 0.8
10-30 12-28 14-27 27-33 8-32 12-28 10-30 26-33
Al —1.02(17) —1.09(20) —1.01(12) —0.49(15) —0.92(12) —0.97(19) —0.89(10) —0.38(14)
0.3 4.3 2.9 3.0 1.7 4.2 1.8 2.1
12-28 10-30 12-28 28-33 10-28 13-27 14-27 25-34
Al 0.01(5) —0.01(3) —0.03(3) 0.12(7) —0.01(4) 0.02(5) —0.01(3) 0.14(9)
3.9 4.9 0.9 1.8 1.2 4.0 1.1 0.9
12-28 12-30 11-29 26-33 12-24 14-28 11-29 26-33
T! 5.66(69) 5.09(59) 5.27(30) 2.73(52) 4.90(91) 4.79(66) 4.75(39) 2.76(47)
4.0 2.9 0.7 2.3 2.5 3.1 1.3 1.5
12-28 13-30 12-28 26-33 13-25 14-28 10-30 26-33
T! 5.86(77) 5.39(49) 5.38(32) 3.24(48) 4.87(121) 5.01(46) 4.93(30) 2.96(48)
(b)
2.6 2.7 0.6 1.0 2.0 1.6 0.9 0.8
10-30 13-29 10-30 24-32 12-28 14-28 11-29 26-33
P —19.7(26) —18.4(15) —18.0(11) —9.0(15) —16.7(23) —16.8(13) —15.8(12) —9.0(11)
2.7 4.0 2.4 1.3 2.2 33 1.1 2.2
10-30 13-27 10-30 26-35 12-28 14-28 15-27 26-33
S8 —1.45(32) —1.44(33) —1.43(17) —0.94(23) —0.98(31) —1.24(14) —1.05(24) —0.82(15)
5.2 3.9 1.0 1.4 1.6 2.5 1.0 1.6
11-29 14-28 12-26 26-33 14-27 16-30 12-28 27-32
y? 0.07(4) 0.06(4) 0.08(2) 0.00(4) 0.13(11) 0.02(7) 0.05(4) —0.08(9)
3.8 3.4 2.0 1.4 4.6 4.3 1.7 1.3
12-28 14-27 10-30 26-33 14-27 . 14-28 15-27 26-31
‘Vf 0.04(1) 0.04(1) 0.04(1) 0.01(1) 0.02(3) 0.04(2) 0.03(1) 0.03(2)
7.4 3.6 2.5 1.8 2.8 1.5 1.4 1.3
12-28 11-31 10-30 26-35 14-27 15-27 11-29 26-34
A2 —1.06(17) —0.96(6) —0.97(9) —0.52(9) —0.89(14) —0.86(8) —0.87(13) —0.42(8)
0.1 3.9 1.9 1.2 0.3 5.9 1.4 1.1
12-28 15-25 16-24 26-33 12-28 14-28 12-25 28-34
A? 0.57(10) 0.51(9) 0.49(9) 0.61(13) 0.49(10) 0.48(11) 0.45(4) 0.53(8)
4.0 3.3 2.6 2.2 4.2 3.8 4.1 2.1
15-25 13-27 14-27 28-34 12-28 14-28 9-31 26-33
T2 0.14(6) 0.13(3) 0.14(3) 0.03(2) 0.09(3) 0.11(3) 0.11(4) 0.06(3)
4.4 1.6 2.6 1.0 1.9 3.0 1.8 0.8
14-27 14-27 12-28 26-33 14-26 17-26 10-30 26-35
T? 0.15(4) 0.14(1) 0.14(2) 0.05(2) 0.06(5) 0.12(8) 0.13(4) 0.07(2)
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1-39 is the forward moving particle with the source at
time slice 0, while the correlator on time slices 79-41 is
the backward moving particle with the periodically
reflected source on time slice 80. To calculate matrix ele-
ments we insert the operator between these ‘“forward”
and “backward” moving particles on the original 16°X 40
lattices.

We use various results from Ref. [7] to interpret our
data. For k=[0.154,0.155], we use My =[0.364,0.297],
fx=[0.0815,0.0779] and Ex=[0.51,0.47], where the
latter quantity is the energy of the kaon with momentum
p=(1,0,0). All results are in lattice units.

In practice, we divide the correlators for the various
matrix elements by the product of kaon correlators, so
that we directly obtain the B parameters for the various
operators O:

(K%p)|O|K(p=0))
(K%p)| 4,10)¢0| 4,|K%p=0))

B@E% 3.1)

We can select the kaon momenta by our choice of source
and by inserting momentum into the operator @. The
statistical errors are reduced because we can average the
operator location over a time slice of the lattice. Away
from the sources, only the lightest state contributes to the
correlators, and we should find a time-independent pla-
teau giving B,. This method is similar to the one we
have used successfully with staggered fermions [3].

The physical picture of the process for calculating ma-
trix elements using smeared sources is as follows: a wall
source at ¢t =0 produces zero momentum K ° which prop-
agates for a time ¢, at which point the operator inserts
momentum p, and the resulting K° with momentum p
then propagates the remaining (N, —¢) time slices until it
is destroyed by a Wuppertal source. Three factors are
essential for our method to work.

(i) The wall source creates only zero-momentum kaons;
otherwise there is contamination from matrix elements of
kaons with other momenta.

|
2
Z%BE(p)= |1+ 1§ SZ (rap) [(VI+Y2+ A +A2)
T
g2 rZZ*(r)
16m* 12

For simplicity, we have here used the operator symbol to
denote its B parameter. The one-loop perturbative re-
sults for the renormalization constants Z , and Z, are
given in Table I. Note that the finite part of the renor-
malization factor (1+(g2/167*)Z ) is largely canceled
by Z? forg?s1.

We give the results for the individual B, (without any
g° corrections) at «=0.154 and 0.155 in Tables
II(a)-III(b). In all cases we find that the signal in the ra-
tio of correlators is significantly better with the operator
¥s as the kaon source than with the operator 4,, even
though the two sets give consistent results. As an exam-
ple, we show a comparison of the two signals in Figs. 1(a)
and 1(b). Our final results therefore use the y 5 numbers.

2

=268 +282) — (18P — 6P+ 4( T ' + T+ (V' —AH—11(VI—A2)] .
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(ii) The Wuppertal source has significant overlap with
the lowest few momenta allowed on the lattice.

(iii) For matrix elements involving p#0 kaons, we
must ensure that there exists an overlap region for the
kaons where a plateau can be observed in the B-
parameter signal. Thus it is essential that the signal for
the zero-momentum kaon produced by the wall source
extends across the lattice to the region where there is a
signal for the nonzero-momentum kaon produced by the
Wuppertal source.

In Ref. [7] we showed that these conditions are
satisfied by the Wuppertal and wall correlators, when we
use p=(0,0,0) and p=(0,0,1). Furthermore, there are a
number of consistency checks we make.

(1) The p=0 matrix element is calculated three
different ways: (a) using wall sources on both sides, (b) us-
ing a wall source on one side and a Wuppertal source on
the other, and (c) using Wuppertal sources on both sides
[in this case there is a small contamination from the
p=1(0,0,1) state].

(2) We use two kaon source operators: ys and A,.
The plateau in each individual B, is reached from oppo-
site directions for these two. The two results should con-
verge to the same value.

As shown in Tables II(a)-III(b) these checks are
satisfied by our data within the statistical accuracy. We
also find that the B parameter for the operators A2 and
P? are within a factor of 2 of their VSA values. As in the
case of staggered fermions, the final value of By is ob-
tained after a large cancellation between the A and V
components showing that the VSA is not a good approxi-
mation.

IV. RESULTS FOR Bg

Our final lattice result at a given value of k and p is ob-
tained from the perturbatively improved combination (us-
ing the convention that all four quarks have distinct
flavor labels so that each term has just one Wick contrac-
tion)

(4.1)

|
We point out that in case of nonzero-momentum transfer,
the signal for B, only exists closer to the Wuppertal
source (at time slice ‘“40”’) than the wall source (at time
slice “0”). This is because the signal in the p=(0,0,1)
kaon correlators only extends for about 20 time slices.
The overall quality of the signal for BE (with g2=1,
pa =1.0) is shown in Figs. 1-4 at various values of k and

p-

Tables II(a)-III(b) show that all individual B, except
for B A, increase by a factor of about 2 between k=0. 154
and 0.155. This increase is largely due to the change in
the VSA, i.e., the factor f2ZM2 decreases by approxi-
mately 1.9 between the two « values [7]. This shows that
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at these values of «, the lattice matrix elements are dom-
inated by the constant term «.

The contribution of the mixing terms to BZ can be
large only if the matrix elements are large, since the per-
turbative mixing coefficient is =~0.005 for g?=1. The
data show that the largest matrix elements are of the
operator 7; however, their net contribution to B is very
small, since P~ 3P! (approximate VSA). Both T? and
2 are close to zero. The next largest contribution comes
from 4T, which is partially canceled by 268! +28% The
net result of these features in the data is that the contri-
bution of mixing terms to By is in fact small (less than
10%).
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FIG. 1. (a) The ratio of correlators for the lattice parameter
BE (g?=1, ua=1.0) at k=0.154 and for momentum transfer
p=(0,0,0). The data are obtained using operator y; as the
kaon source. (b) The same as in (a), but using operator A4, as
the kaon source.
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FIG. 2. The same as in Fig. 1(a), but for k=0.154 and
p=(0,0,1).

Given BE(p) we calculate By and the errors using Eq.
(2.10) two ways: (1) for each jackknife sample we first
perform the momentum subtraction and then the mean
value and the error are obtained as the jackknife estimate
over 35 samples, and (2) we construct the four quantities
needed in Eq. (2.10) independently along with their er-
rors, and obtain the final error estimate assuming that the
individual estimates are uncorrelated. Our quoted results
use the first method, but we note that both the methods
yield consistent estimates.

We have calculated B ,%(p=(0,0,0)) three different
ways: using Wuppertal-Wuppertal (S-S), Wuppertal-wall
(S-W), and wall-wall (W-W) correlators. For example,
our results, using g2= 1.0 and pa =1.0, are

O.4l||TIIIII|TIT||

=1)

By(g®

lLllJlllll

o4l L
0 10 20 30 40
t
FIG. 3. The same as in Fig. 1(a), but for k=0.155 and

p=1(0,0,0).
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FIG. 4. The same as in Fig. 1(a), but for k=0.155 and
p=(0,0,1).

0.38(7) S-S,
0.37(4) S-w,
0.37(4) W-w,

BE(k=0.154)=

(4.2)

0.10(11) S-S,
0.11(7) S-w,
0.13(7) wW-w.

BE(k=0.155)=

The consistency of the data suggests that the contamina-
tion in the S-S result from higher-momentum kaon states
is at most a few percent. Correlated error analysis of
data at p=(0,0,0) and (0,0,1) using the jackknife process
can only be done with the S-W correlators, so we shall
henceforth quote results for BZ(p) obtained from these.

In order to extract the continuum result for By we
must choose the values of both g2 and ua to use in Eq.
(4.1). Lepage and Mackenzie have suggested [18] that
perturbation theory is much better behaved if one uses
the coupling constant in a continuum scheme such as the
modified minimal subtraction scheme (MS), instead of the
bare lattice g2. They also give a prescription for choosing
the appropriate scale of the coupling constant. In general
this scale will differ for the various operators that mix
with @O, in Eq. (4.1). To simplify the calculation we take
all the scales, and thus all the coupling constants, to be
the same, i.e., all of O(w/a). Then the Lepage-
Mackenzie prescription amounts to a replacement of the
bare lattice g2 with an effective coupling g2;~1.75g2 at
B=6.0. To study the dependence on g2 we use four
different values, g%;=0.0, 1.0, 1.338, and 1.75. It is im-
portant to realize that only a two-loop calculation of the
perturbative coefficients can test whether a given choice
for g2 is reasonable. Such calculations that have been
done to date support the Lepage-Mackenzie prescription
for choosing g%; [18].
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The choice of ua is of a different character than that of
g?. In physical matrix elements (e.g., that related to CP
violation in K°-K © mixing) By always appears multiplied
by a coefficient function, such that the combination is in-
dependent of u. At leading order, the scale-independent

combination is

—6/(33—2N}r

By=a,(pn) 'Be(u), 4.3)

where N, is the number of active flavors. In fact, By
does have some dependence on u, coming from the fol-
lowing sources. First, since we are using only the leading
order expression for Z (ua), Bx does depend on p at non-
leading order: d lnﬁK /dInp < g*(w). This is likely to be a
small effect, and it can probably be pushed to next order
given the fact that the two-loop anomalous dimension
and one-loop matching coefficients are known. We say
“probably” because it is possible that there are some re-
sidual subtleties with Wilson fermions associated with the
mixing of @, with opposite chirality operators. A relat-
ed source of u dependence occurs when pa differs greatly
from unity: then higher-order terms, proportional to
[g2n(ua)]”, which are not included in Eq. (4.1), become
large. What is happening is that the leading logarithms,
which have been summed into the coefficient function,
are partially incorporated into the perturbative coeffi-
cients. Once again, one can probably take these into ac-
count knowing the anomalous dimension to two-loops, or
finesse the problem by taking ua ~ 1. Finally, we are cal-
culating the lattice result in the quenched approximation,
for which the number of active flavors is zero, while we
wish to match to the full theory with N, active flavors.
This introduces a small i dependence.

Our emphasis in this paper is on improving methods
for calculating By, and not on extracting final numbers
for B k- Thus we choose to quote our results for a variety
of values of pa so as to allow others some flexibility if
they wish to use our numbers. We use ua=1.0, 7, and
1.77r. We have a slight preference for pa =, since then
the continuum and lattice cutoffs are matched.

Table IV shows the sensitivity of the results to the
choices of parameters, for both B,% and the momentum
subtracted Bg. There is a significant variation of the re-
sults with g2 and ua. For a fixed value of ua, the lattice
results for both BE(p=(0,0,0)) and BE(p=(0,0,1)) in-
crease as a function of g2; due to the increased contribu-
tion of the mixing operators. For fixed g2, an increase in
pa decreases the contribution of the diagonal operators
[note that B,%(pz(0,0,0)) at «=0.155 is insensitive to
changes in ua because the diagonal contribution happens
to be almost zero there].

As for By after momentum subtraction, the estimate
decreases by 10% -20%, at both values of quark mass,
between g2z =1.0 and g2;=1.75, for fixed pa. It turns
out that almost all the variation comes from the diagonal
renormalization constants [for example, the ratio of
(1+(g2/167*)Z ) to Z% changes from 0.93 to 0.8], and
not from operator mixing. As our present best estimates
for Bx we quote the results at g2z=1.75, and use ua =:
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TABLE IV. The lattice B parameter for the perturbatively improved operator O for zero and one
unit of lattice momentum, and the B parameter after momentum subtraction. The data show the mag-
nitude of the variation with the value of g; and pa used in the perturbative renormalization constants.
The range of time slices used in the fits is specified in the header.

k=0.154 k=0.155
BE(p=0)  BE(p=1) BE(p=0) BE(p=1)
g ua 12-28 24-34 By 10-30 26-34 By
0.00 0.298(44) 0.446(42) 0.83(21) —0.023(63) 0.263(62) 0.77(19)
1.00 1.0 0.373(45) 0.494(52) 0.81(23) 0.109(74) 0.330(61) 0.71(20)
1.00 T 0.362(42) 0.476(50) 0.78(22) 0.110(71) 0.319(60) 0.69(22)
1.00 1.77 0.356(42) 0.468(50) 0.76(22) 0.110(70) 0.315(59) 0.67(21)
1.338 1.0 0.405(44) 0.512(55) 0.79(24) 0.175(75) 0.359(69) 0.68(24)
1.338 T 0.388(42) 0.486(53) 0.75(22) 0.176(71) 0.344(62) 0.64(22)
1.338 1.77 0.380(41) 0.475(51) 0.72(22) 0.176(69) 0.337(61) 0.62(22)
1.75 1.0 0.453(45) 0.536(58) 0.75(23) 0.268(70) 0.401(74) 0.64(25)
1.75 T 0.429(42) 0.497(53) 0.68(22) 0.268(63) 0.379(71) 0.57(23)
1.75 1.7 0.417(41) 0.497(51) 0.64(21) 0.268(59) 0.369(69) 0.55(22)
By (k=0.154)=0.68(22) , are nearly as large as the signal. If we now use the esti-
(4.4)  mate given in Sec. II, v /(a+BME )~ —0.3, then we see

B (=0.155)=0.57(23) .

We now turn to the sources of systematic error in our
results for By. We first address the question of p* terms
in the chiral expansion. There are three terms at this or-
der, 8,m*, 8,m?p-p’, and 8,p-p’p-p’, the latter two con-
taining a physical part as well as an artifact. There are
also chiral logarithms [proportional to m *In(m) and pos-
sibly m?In(m)], which we ignore. The momentum sub-
traction method removes 8;m*. So what we end up cal-
culating is

ExBy(p)—mgBg(0)  (y+yg)+8mg+8;m(m+E)
8/3f2

Ex—mg
4.5)

To disentangle 8, and 8, requires data at more values of
momentum transfer. We can only roughly estimate the
size of the O (p*) corrections by lumping all the correc-
tions into a single term; i.e., we modify Eq. (4.5) to

ExBg(p)—mgBg(0) (y+yg)t+dm(m +E)
8/3f%

Using our results at the two masses we extract §~0.02.
From this we find that the p* term is roughly [0.36,0.27]
compared to [0.78,0.69] for the signal for Byg. These
corrections are of similar size to those found using stag-
gered fermions, i.e., 20%-30% at the physical kaon
mass. Even though this comparison indicates that the
O (p*) artifacts due to the chiral-symmetry-breaking term
in Wilson fermions may be small, one needs to further de-
velop a reliable way to extract the physical contribution.
The second source of error is the lattice artifact . To
estimate this, we first extract the other artifacts,
a+pBm}, neglecting the O(p*) term. We find (using
g?=1, pa =) that this combination is [ —10(6), —8(4)]
X 1074, for k=[0.154,0.155]. This is to be compared
with our results for By, which can be represented as
(y +vx)mE=[19(5),10(3)]X 107 % Thus the artifacts

4.6
Fop— (4.6)

that removing y would reduce Bg by 15%-25%. We
stress that this is only a crude estimate, but it does indi-
cate that the error from this source is relatively small.

V. COMPARISON WITH
PREVIOUS CALCULATIONS

The staggered fermion results for By [3] are statistical-
ly the most accurate and have the correct chiral behavior.
At B=06.0, the kaon mass roughly matches for staggered
m,=(0.02+0.03) and «=0.154, and for staggered
m,=(0.01+0.02) and k=0.155 [19]. Thus we can com-
pare the corresponding data for Bx. This is a particular-
ly good comparison because the two calculations have
been done using the same set of background gauge
configurations. Using g2=0 in the four-fermion renor-
malization constants, the staggered results are 0.76(1) and
0.72(2) to be compared with our numbers 0.83(21) and
0.77(19), respectively. A striking feature is that the er-
rors with Wilson fermions are a factor of 10 or more
larger. The data in Table IV indicate that the errors in
individual BE(p) are larger by about a factor of 4, and the
remaining factor comes from the momentum subtraction.
The staggered results were obtained by making fits
without including the full covariance matrix, and if we do
the same for Wilson fermions then the errors in individu-
al BL(p) are reduced by a factor of about 2. Thus, at the
level of the signal in the correlators, the smeared sources
work almost as well for Wilson fermions as for staggered
fermions. It is the process of momentum subtraction that
leads to a significant increase in the error.

The perturbative corrections for staggered fermions,
though smaller than those for Wilson fermions, have not
been included in the published results of By; including
them would decrease By by ~(3g%;)% for the choice
pa =1 [20]. It could be argued that one should actually
compare corrected staggered numbers with our preferred
results using g<4=1.75 and pa =, i.e., 0.68(22) and
0.57(23), respectively. In this case Wilson fermion esti-
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mates of By lie below the staggered values. (The varia-
tion with g2; and pa is much larger for Wilson fermions.)
To conclude, it is, at present, not clear whether the
difference in By from the two formulations is significant,
given the size of the errors in the Wilson results. Also,
the differences in the O (a) corrections for the two fer-
mion formulations, e.g., the artifact y, are not under-
stood and have not been included in the comparison.

We can also make a direct comparison with results ob-
tained by Bernard and Soni using Wilson fermions [2].
They have calculated BE£(p=0) using the perturbatively
improved operator on a subset of the same lattices (they
used only 19 lattices as they skipped every other one in
each of the two streams), and at the same two values of «.
Their method of extraction of B is described in Ref. [2],
and is different than the method we have used. Using
g2¢=1.338 and pa=1.77 their results are
Bf(p=0)=0.36(22) and 0.24(45) at k=0.154 and 0.155,
respectively [15], to be compared with
BE(p=0)=0.38(5) and 0.11(7) obtained by us. Even
after allowing for a factor of ~V'2 due to statistics, it is
clear on the basis of this comparison that our use of
smeared sources has reduced the errors considerably.

Though our results for B are more accurate com-
pared to those obtained by other groups using Wilson fer-
mions, our final results for By have larger errors [cf. Egs.
(1.2) and (1.3)]. The gain due to the use of smeared
sources is compensated for by the increase in error due to
momentum subtraction. The advantage of using momen-
tum subtraction is that it unambiguously removes lattice
artifacts a and 8. Also, numerical errors in B ,15(p= 1), as
well as the contribution of quartic terms in the chiral ex-
pansion, should decrease when using a larger lattice due
to the decrease in the value of lattice momenta.

One further qualitative comparison that we can make
is for the B parameters (without perturbative improve-
ments but after momentum subtraction) of the individual
space-time and one-loop and/or two-loop components of
the four-fermion vector and axial-vector operators, with
the corresponding results obtained using staggered fer-
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mions [3]. Such a comparison is possible because, as dis-
cussed above, the effects of operator mixing are small.
This comparison provides information on the reliability
of the momentum subtraction procedure for Wilson fer-
mions. Furthermore, as explained in Ref. [21], the chiral
behavior of B, and B, is known; both are expected to
increase in magnitude with decreasing quark mass due to
chiral logarithms and finite volume dependence, and can
therefore provide a sensitive test at small quark masses.
The results of our comparison are shown in Table V.
Though the errors in the results with Wilson fermions are
much larger, it is reassuring to see that the central values
are in good agreement. In fact, the agreement is far more
impressive than the errors would naively lead us to be-
lieve. We need to perform calculations at more values of
k and 3 to confirm this favorable behavior.

VI. RESULTS WITH TWO FLAVORS
OF DYNAMICAL FERMIONS

We have also estimated By, using the same methodolo-
gy as above, on 16* lattice configurations generated with
two flavors of dynamical Wilson quarks. The details of
these lattices are given in Ref. [22]. The kaon mass at
B=5.5, k=0.159 and 0.160 is roughly M, =860 and 650
MeV, respectively; and at 3=5.6, k=0.156 and 0.157 it
is about 1050 and 820 MeV, respectively. This calcula-
tion of By has been done only with kaons created with a
Y5 operator. We find that a time interval of 16 is large
enough to give a stable plateau over about six central
time slices for both p=(0,0,0) and (0,0,1) correlators, as
illustrated in Figs. 5 and 6. The behavior of individual
B terms is very similar to the quenched numbers shown
in Tables II(a)-III(b).

Before presenting the final results, we first discuss a
technical drawback of this calculation. On these lattices
only Wuppertal source correlators are available, so with
our method some contamination from higher-momentum
kaon states is present in the data. For momentum

TABLE V. A comparison of individual B parameters, for space-time and one-loop and/or two-loop
components of the vector and axial-vector four-fermion operators, between Wilson and staggered fer-
mions at matching values of the kaon mass. The kaon energy at p=(0,0,0) and p=(0,0, 1) measured
from the two-point correlators is also given. All results are quoted for g2 =0.

Wilson Staggered Wilson Staggered
k=0.154 m,=0.02+0.03 k=0.155 m,=0.01+0.02

My 0.370(6) 0.374(3) 0.297(11) 0.296(2)
Eg 0.511(12) 0.466(22)
y! —0.57(33) —0.48(2) —0.71(53) —0.79(4)
y? —0.11(8) —0.036(4) —0.13(11) —0.10(1)
y! —0.10(7) —0.056(3) —0.12(15) —0.13(1)
y? 0.01(2) —0.009(1) —0.02(4) —0.024(2)
Al 0.28(18) 0.15(1) 0.41(42) 0.36(2)
A2 0.27(16) 0.063(5) 0.29(32) 0.13(1)
Al 0.28(12) 0.33(1) 0.40(20) 0.42(1)
A? 0.79(26) 0.81(1) 0.82(40) 0.85(2)
B4 1.62(42) 1.35(3) 1.92(89) 1.76(5)
By, —0.78(40) —0.58(2) —0.98(71) —1.04(5)
By 0.83(21) 0.76(1) 0.77(19) 0.72(2)
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FIG. 5. The ratio of correlators for the lattice parameter Bf
(g2¢=1.071, pa=1) measured on 16* lattices generated with
two degenerate flavors of dynamical Wilson fermions. The lat-
tice parameters are 3=5.6, k=0.157, and momentum transfer
p=1(0,0,0), and we use 5y sd as the kaon source.

transfer p=(0,0,0), the largest contamination comes
from the propagation of p=(0,0,1) kaons across the lat-
tice. [The contamination in the p=(0,0,0)—(0,0,1)
data comes from the presence of p=(0,0,1)—(0,0,2)
terms.] This contribution is suppressed by two factors:
the exponential suppression due to the extra energy of the
p=(0,0,1) state, and the square of the ratio of ampli-
tudes for creating a p=(0,0,1) kaon versus a p=(0,0,0)
kaon by the Wuppertal source. These factors increase as
the kaon mass decreases. They are similar on our four
sets of lattices. At 8=5.6 and k=0.157, our estimates
are =~ 10 and (1.5)%. There is also an enhancement factor
because the matrix element between higher-momentum
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FIG. 6. The same as in Fig. 5 but for p=(0,0,1).
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kaon states is larger. We estimate this factor using the
VSA to be (E(p=1)/My)*~(1.5)% These three factors
combine to increase the result for By by roughly 10%.
We note that in the case of the quenched lattices, having
40 time slices reduced this contamination to the level of a
few percent. This is evident when comparing the S-S and
the S-W or the W-W results in Tables I1(a)-I11(b).

We again calculate BE for three values of the effective
coupling: 0.0, g2, and 1.75g2. The lattice scale on indivi-
dual lattices (without extrapolation to the chiral limit) is
not well defined, and we simply set ua =1. The results
are shown in Table VI. As explained above, the results
for By are likely to be ~10% larger due to contamina-
tion from higher-momentum kaon states. In addition,
By has to be extrapolated to the physical kaon mass.
Thus, the only conclusion we can draw is that the
quenched and dynamical results are in qualitative agree-
ment for quarks masses in the range m; <m, <3m.

VII. BPARAMETER FOR THE LEFT-RIGHT
ELECTROMAGNETIC PENGUIN OPERATORS

There are two additional four-fermion operators that
we analyze using the data in Tables II(a)-III(b). These
are the AI=2 part of the left-right electromagnetic
penguin operators @; and @O, They alone contribute to
the imaginary part of the I =2 amplitude and therefore
give the dominant electromagnetic contribution to €' /€.
A knowledge of their B parameters is phenomenological-
ly important as discussed in Ref. [23]. Taking just the
AT =2 part of the operators simplifies the numerical cal-
culation as the “eye” contractions cancel in the flavor
SU(2) limit.

In principle one would like to calculate the matrix ele-
ments of the penguin operators

0,=(5,v,Ld,) (@Y, Ruy)—4d,y ,Rd),)
—1(5,7,Rs,)] » 7.1

Oy=(5,v,Ld,)[(@,y,Ru,)—5(d,y, Rd,)
—3(57,Rs,)], (7.2)

between a K ™ and a # 7. Instead, we calculate the AT =2
part given by the operators

03=(s,y,Ld,)[(@,y,Ru,)—(d,y,,Rd,)]
+(§a7/,uLua )(EbyMRdb) > (73)

(Og/ZZ(EaV“Ldb )[(ﬁbyuRua )_(Jb'}’uRda )]
+(5,7,Lu, )(ﬁbVHRda ). (7.4)

Note that the overall normalization is unimportant as it
cancels in the B parameters. The one loop perturbatively
corrected versions of these operators have been calculat-
ed in Refs. [11,12], and are linear combinations of the
operators labeled @ and @, therein. The matrix ele-
ments of these corrected operators between a K+ and a

77 are, in the flavor SU(2) limit,
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TABLE VI. The same as in Table IV, but for lattices generated with two flavors of dynamical Wil-
son quarks. The upper and lower halves of the table correspond to S=5.5 and 8=35.6, respectively.
These numbers are obtained with ua =1.0.
BE(0) BE(1) Mg E(1) By
k=0.159 g% =0.000 0.327(88) 0.507(96) 0.98(43)
g2x=1.091 0.389(74) 0.537(80) 0.477(13) 0.660(16) 0.92(36)
g%x=1.909 0.401(56) 0.505(58) 0.78(27)
k=0.160 g22x=0.000 —0.593(88) —0.052(51) 0.93(24)
gkx=1.091 —0.415(76) 0.051(44) 0.362(7) 0.562(22) 0.89(21)
g2=1.909 —0.217(57) 0.132(34) 0.76(17)
xk=0.156 g%:=0.000 0.497(33) 0.685(39) 1.23(20)
g%x=1.071 0.534(31) 0.693(36) 0.456(5) 0.613(10) 1.15(19)
g2=1.875 0.512(26) 0.629(30) 0.97(16)
k=0.157 2%:=0.000 0.154(25) 0.436(29) 1.14(19)
gke=1.071 0.161(25) 0.438(29) 0.358(7) 0.501(16) 1.13(19)
g2=1.875 0.234(21) 0.439(24) 0.95(16)
2 2 (Z,—Z,)
Mp)= |1+ =E=Z (r,ap) |[2P' =28+ V>~ A2+ E—= 2L P22+ V1 — 4]
167 16 3
g> r’z*mr 1 2 1 2 1 2 1 2 1 2
—16—2—-—1—2———[4? —12P°+ 168" — 168 — TV —11V*—9A " —5A*— 6T +27T*] (7.5)
T
and
2
Mg(p)= |1+ 1g SZ,(rap) |[2P2—282+ V' —A "]
T
2 27 %
1§ LA ZIZ(’) [18P! —38P2+ 148! — 2682 — 5V — V2 + 4! —3A42—16T"] , (7.6)
T

where, if necessary, we have made a spin Fierz transfor-
mation to recast all the terms as two-spinor loops. The
corresponding VSA contractions are

MYSA(p)=[2Z3P*—Z% A% (1.7

and

MYSA(p)=[2Z3P*—1Z%A%] . (7.8)
The B parameters are the ratios of, for example, the ma-
trix element of O, to its VSA. We evaluate these in the
SU(3) limit, i.e., degenerate u, d, and s quarks. The one-
loop values of the renormalization constants for these LR
operators are also given in Table I. Note that in the
DRED scheme the operator_(f)%/ 2 does not mix with the
scheme-dependent operator @ of Ref. [12]. It is for this
reason that we choose this scheme, although our analysis
shows that the results are only weakly scheme dependent.

In the chiral limit these matrix elements are expected
to behave as ¢ +dm2+ --- . There are O(a) correc-
tions in the coefficients ¢ and d due to the lattice discreti-
zation. At present the only way to reduce these is to use
an improved action and/or work at weaker coupling. In
this study we do not have any control over these correc-
tions and we simply give the lattice results for the Wilson
action.

The quality of the signal is shown in Figs. 7 and 8. In

|the analysis of these LR operators we find that using the
full covariance matrix produced estimates that are about
1o lower than the fit values shown unless we significantly
decrease the range of the fit. The error estimates with

and without using the full covariance matrix in the fits
are essentially the same. This indicates that the data at
1 [ T T T T I T T T T I T T T T I' T T T T ]
0.95 ]
o9 .
g : y
S~ o 4
m L ]
0.85 — %
08f % H ]
0’75 L 1 1 1 1 I 1 1  — I 1 1 1 1 I 1 1 i — ]
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t

FIG. 7. B parameter for the LR electromagnetic penguin
operator (3’2, The data are obtained using g2;=1.75 and
pa=m.
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FIG. 8. B parameter for the LR electromagnetic penguin
operator 03’2. The data are obtained using g;=1.75 and
pa=1.

different time slices are highly correlated and larger
statistics is needed to reliably include the correlations.
We choose to use the full range of the plateau in the fit
and quote results obtained without including the correla-
tions.

As in the case of the LL operator, in order to quote a
value for the B parameters we have to specify the value of
g2y and ua used in the perturbatively improved operators.
In Table VII we quote results for a number of choices in
order to give an estimate of the sensitivity of the results
to variation in these parameters. The data show that this
could be a 10% effect, so it is important to make a good
choice of g2.

The data also show a small increase in the B parame-
ters as the quark mass is decreased. Linearly extrapolat-
ing the g§ﬁ=1.75, pa =1 results to the physical kaon
mass, our best estimates are

B3/2=0.89(4) ,

(7.9)
B}?=0.93(5) .
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These values are slightly smaller than the numbers used
by Lusignoli et al. [23] in their analysis of €’ /¢€; they used
B32=PB3/2=1.0+0.1. To make a complete determina-
tion of €' /€ we need to calculate many other matrix ele-
ments, for example of the strong penguin operators O
and Oy, for which the lattice technology is still unreliable.
For this reason we do not consider it opportune to repeat
the phenomenological analysis.

We can make a direct comparison of lattice results for
03’* with those obtained by Bernard and Soni on the sub-
set of lattices described in the analysis of By. Their re-
sult, obtained using giy=1.338 and pa=1.77 in the
DR(EZ) scheme, is 0.965(41) at k=0. 155, to be compared
with 0.971(50) obtained by us. This comparison suggests
that for the matrix elements of LR operators, our method
of sandwiching the operator between smeared sources is
no better than using propagators from a single source
point. On the other hand, the fact that smeared sources
yield a plateau over a large range of time slices gives reas-
surance that one potential source of systematic error is
under control.

VIII. CONCLUSIONS

We show that the calculation of the kaon B parameters
with Wilson fermions is significantly improved by the use
of nonlocal quark sources. By using a combination of
Wuppertal and wall source correctors, we demonstrate
that the on-shell matrix elements can be calculated at
nonzero momenta.

By combining results at p=(0,0,0) and (0,0,1), we car-
ry out a nonperturbative subtraction of the lattice ar-
tifacts in the calculation of Bx. Even though we cannot
take into account the artifact ¥, our results are in good
agreement with those obtained with staggered fermions.
On the basis of this exploratory study we feel confident
that the momentum subtraction procedure indeed works.
To make further improvements and reduce the O (a) ar-
tifacts one needs to repeat the calculations with an im-
proved lattice action and on a larger physical lattice with
smaller p,;,-

We find a clean plateau in the data for the B parame-
ters of the LR electromagnetic penguin operators. The

TABLE VII. The B parameter for the LR electromagnetic penguin operators on the quenched lat-
tices. The fit range is ¢ =13-27 in all cases. The results are shown for a number of values of g and ua

used in the perturbative renormalization constants.

k=0.154 x=0.155
g ua oy o o1 oy
0.00 0.902(24) 0.947(30) 0.908(44) 0.963(50)
1.00 1.0 0.871(24) 0.918(29) 0.878(44) 0.935(50)
1.00 T 0.918(29) 0.945(30) 0.911(46) 0.962(52)
1.00 177 0.901(25) 0.953(30) 0.921(46) 0.969(52)
1.338 1.0 0.832(23) 0.877(23) 0.830(43) 0.894(48)
1.338 T 0.891(25) 0.934(30) 0.902(46) 0.951(51)
1.338 1.77 0.908(25) 0.950(30) 0.921(47) 0.966(52)
1.75 1.0 0.747(21) 0.785(26) 0.753(40) 0.802(45)
1.75 T 0.869(25) 0.911(30) 0.883(46) 0.928(51)
1.75 1.7 0.901(26) 0.941(31) 0.916(48) 0.958(52)
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results show that the VSA works much better for these
operators. All the B parameters vary significantly with
the choice of g%; used in the perturbative renormalization
coefficients. Our final estimates are given using the value
advocated by Lepage and Mackenzie in Ref. [18], i.e.,
g2x=1.75.

The method of using the combination of Wuppertal
and wall correctors can be extended to study other
three-point correlation functions, in particular structure
functions and form factors. This work is in progress.
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